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The destabilizing effe~I of the shear-thinning of a non-Newtonian fluid and its elasticity in the plane-parallel and circular 
displacement fronts in a Hele--Shaw cell is investigated, as well as the influence of the elasticity of a fluid on the shape of the 
Saffman-Taylor "fingers" which are formed when prima~ instability develops in the fronts. The treatment is carried out separately 
for a pure viscous non-Newtonian fluid and for a viseo-elastie fluid (with Newtonian viscous behaviour under steady shear flow). 
As a result of the multistage development of instability in the displacement of one fluid by another in a Hele--Shaw cell (as the 
flow in the narrow gap between large plane parallel plates is traditionally called), various structures can be formed from an 
individual displacement finger up to complex patterns of a fraetal nature. The form of these structures and the conditions for 
their formation are fou~ad to be sensitive to the rheologieal characteristics of the fluids. O 1997 Elsevier Science Ltd. All rights 
reserved. 

In Section 1, we consider the linear stability of rectilinear and circular displacement fronts for a non- 
Newtonian, non-linear viscous fluid which is displaced by another fluid, taking account of surface tension 
in the formulation of the plane problem which corresponds to the averaged motion over the gap width. 
It is shown that the critical wavelength of unstable small perturbations for a rectilinear front and the 
critical radius for the onset of instability in the case of radial displacement in pseudoplastic fluids is 
less than in viscous Newtonian fluids. Unstable perturbations also grow more rapidly in pseudoplastic 
fluids. These general conclusions are more easily achieved when there is a power dependence of the 
viscosity on the shear stress. They are true regardless of some uncertainty in the methods for comparing 
power-law and Newtonian viscous fluids. 

In Section 2, we estimate the similar effect of the elasticity of the visco-elastic fluids which are being 
displaced on the development of instability in plane-parallel and circular fronts and on the advance of 
a finger of an invi.,;cid fluid in a Hele-Shaw cell. An acceleration in the growth of perturbations was 
established earlier in [1] by a numerical analysis of the equations of small perturbations of a plane- 
parallel displacement front of a viscoelastic fluid with the Oldroyd-B model. The shear flow in the gap 
between the parallel plates of the cell is characterized, in the case of this model, by the absence of an 
anomalous viscosity effect, and the effective viscosity remains constant. This result is thereby indicative 
of the destabilizing effect of elastic normal stresses. The complexity of the analysis in [1] is due to the 
fact that the norma~l stresses were taken into account both in the boundary conditions on the displacement 
front as well as in the determining differential equations. It will be shown that, at least in fluids with 
low elasticity, the effect of the normal stresses in the boundary condition on the front is a prominent 
factor in accelerating the growth of small perturbations of the displacement front. It is assumed that, 
locally within the part of the cell filled with the fluid, the flow obeys the usual Boussinesq relation for 
a viscous fluid, which is equivalent to the Darcy law in the case of a porous medium. Results are then 
obtained quite s~lply in an analytic form both for a rectilinear and a circular displacement front. A 
uniformly moving :finger of the inviscid fluid which is being displaced is formed during the subsequent 
development of unstable perturbations. When the effect of the low elasticity of the fluid which is being 
displaced solely ow the front is taken into account as usual, it is shown that such a finger becomes less 
sharp due to the e!tasticity. 

1. DISPLACEMENT FRONTS OF NON-LINEAR VISCOUS FLUIDS 

The modified Darcy law for the flow of a non-linear viscous fluid. We consider the flow of an incompres- 
sible, non-Newtonian fluid (with a general form of the dependence of the coefficient of viscosity T1 on 
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the second invariant of the rate of deformation tensor and v z -~ O, alaz ,> olax, alay) in the gap -h ~< z 
~< h between two closely spaced smooth parallel plates (Hele-Shaw flow). 

In the inertialess approximation of a thin layer (the assumption of the smallness of the Reynolds 
numbers is natural in the case of a narrow gap), the equations of motion reduce to a relation for the 
balancing of the pressure forces and viscosity and, together with the incompressibility condition and 
the defining equation, they take the form 

a P - 0 ,  Vp /h" (]:~])av 
Oz- v.,,:o. ,r:  tl v_=(a/ax, O/Oy) (1.1) 

The description of the flow becomes actually two-dimensional: v = (Vx, vy, O) is the velocity vector 
and • = (Xx, x r) is the two-dimensional "shear stress vector". In general, it is possible to drop the third 
coordinate z in the equations obtained by integrating with respect to it. The first integration of the 
equations of motion, taking account of the fact that there are no shear stresses in the meridian plane 
z = 0 (in the plane of symmetry of the flow), after inversion of the defining relation, gives 

i :zl 0z g(x) , =g(%), "r=zVp 

and, on carrying out a second integration with respect to z taking account of the no-slip condition for 
the fluid on the solid walls and averaging over the whole thickness of the gap between the plates, we 
arrive at the relations for the averaged flow velocity through a Hele-Shaw cell 

u=-MVp,  V . u = 0 ,  u = ( v ) = T h  ! : d z  

(1.2) 
h 2 xw 

"l;w 0 

By virtue of the weft-known analogy with flow in a porous medium, these relations, for brevity, are 
subsequently called the modified (non-linear) Darcy law. In the case of a viscous Newtonian fluid, the 
defining equation is linear (g(x) = X/rlo), and the "Darcy law" turns out to be linear with a constant 
mobility M = h2/(3rio). A non-Newtonian fluid is non-linear and the mobility M depends on the 
magnitude of the shear stresses on the walls xw which is proportional to the magnitude of the pressure 
gradient. For example, in the case of a power-law fluid 

( x--] y" nh2 g('%') (1.3) 
g ( x ) = t , K )  , M =  2n+----~ 'tw 

Rectilinear front o f  the displacement o f  one fluid by another and its stability. We now consider the problem 
of the homogeneous displacement of a non-linear viscous fluid with a constant velocity U within the 
framework of an averaged plane description with Eqs (1.2). It has the simple solution 

Uil ~-U~)ix ) pl = P O - h + ~ x  ( X - U t ) ,  x >  Ut 

ui2=US~, p2= Po +~P-ffL(x-Ut), x <Ut 
OX 

and, by virtue of the modified Darcy law, the constant values of the pressure gradient are linked with 
the constant rate of displacement by the relations 

(bliP, I] - , ,  (hl P  I] 
U : - M ' t .  I-fflJ --'" t IJ a< (1.4) 
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We label the characteristics of the fluid being displaced and the displacing fluid with subscripts 1 and 
2 respectively. Here, the difference in the mobilities M z and M2 is attributable to the difference in their 
constitutive equations. 

On the common boundary of separation (the displacement front) x = Ut, the velocities of the flows 
are identical and the pressure undergoes a discontinuity of magnitude o,/h due to capillarity (the 
interphase boundary, which is rectilinear in the (x, y) plane, is strongly curved in the third direction 
and its curvature is inversely proportional to the gap width). The expression used for the magnitude 
of the capillary jump corresponds to the case of an ideally wetting fluid which is displaced; however, it 
only changes quantitatively if the wetting is non-ideal but the contact angle remains constant regardless 
of the motion of the displacement front. 

Small distortions of the displacement front in the plane of the flow 

x = u t  + { ( y ,  t) (1.5) 

give rise to small perturbations in the velocity and pressure fields of the fluids. The components of the 
velocity perturbations in the direction of the normal to the front are defined by the linearized boundary 
condition 

m (1.6) 

In the linear approximation, the modified Darcy law reduces to linear relations between the velocity 
and pressure perturbations 

% =-t.,  3p;, ' =-Ms 3p;, ~ x  us: ~ s=l,2 

(1.7) 
h 2 

M s -Ms('cws)>O, L s - -~gs ( 'Cs ) -2Ms  >0 
"[ws 

and, by virtue of the incompressibility condition, the pressure perturbations satisfy the (elliptic type) 
equations 

32 , 
L, ~)2p's M °-Ps = 0 

, & 

Since the equations for the perturbations are linear and have constant coefficients (because of the 
homogeneity of the perturbed flow) it is convenient to consider elementary perturbations with an 
exponential dependence on y and t. Finally, we have 

~ = a e  ie, e - k y - t o t  

Vl. : ( , - v , )  

If we again take; into account the linearized boundary condition for the pressure jump due to the 
action of surface tension when there are perturbations of the front curvature in the plane of the flow 
(this constraint on the distortions of the front solely in the (x,y) plane appears to be somewhat artificial. 
However, as the never-ending discussion in the case of Newtonian fluids [2] shows, it is entitled to exist 
as a certain first approximation), that is 

02~ ( 3pl 3P2 )~ + ( P; -  P2 ) x-vt 
(X ~y2 = 3x 3x 

then we obtain the dispersion equation 
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-i(°=lk( 3plax aPl~x (Ikz)[(LIMI)-~+(/~M2)-~] -' (1.8) 

which relates -4o~ to I k I and the defining instability condition and the rate of exponential growth of 
the small perturbations. 

The surface tension at the interface between two fluids leads to the appearance of a critical (minimum) 
value of the wavelength of the growing perturbations 

= 2,,=#lap'l-I ap= ] (1.9) 
klaxl lax ) 

Only perturbations with 2~ > ~c are unstable and perturbations with a wavelength k J 3  grow most rapidly. 
A rectilinear displacement front is always unstable with respect to much longer wavelength 
perturbations when I/~Pl/~ I > I Op2/ar I regardless of the magnitude of the surface tension. 

At first glance, result (1.8) indicates, at least, that the instability criterion is independent of the type 
of fluid if the pressure gradients ahead of the front and behind it are equalized for the various constitutive 
relations of the fluids (for different pairs of fluids). However, in the case of a selected pair of fluids, it 
is not possible, generally speaking, to specify the pressure gradients in them independently as is seen 
from (1.4). The different, but matching, pressure gradients must ensure one and the same rate of steady 
advance of the front when the fluids have different mobilities. The rate of growth of unstable 
perturbations turns out to be even more sensitive to the characteristics of the fluids. 

In the case of a power-law fluid, it follows from (1.4) and (1.7) that 

nshl+lln, ~psl lln,-I =U  ~PS -I 
M, = n,g = (2n, + 1)r~'' "ffxl ax (1.10) 

and dispersion equation (1.8) reduces to the formula 

ap, ap= = ap, ap= -i 
(1.11) 

with an obvious dependence of the rate of growth of the unstable perturbations on the power-law indexn. 
In the case of a specified rate of advance of the front U, the parametrization can be changed using 

relations (1.4). In the case of a power-law fluid, inversion of (1.4) gives (see also (1.10)) 

n, 1 U 

a x = T L k .  ~)-h-j k .,)h 

In the last equality, the viscosities of the two fluids on the plates which bound the flow have been 
introduced in accordance with the definition rlw = %/g(xw). These viscosities are completely determined 
by the magnitude of U. When this is taken into account, formula (1.1) can be rewritten in the somewhat 
different form 

-io~ = ulkl u[nw, (2 + 1/n, ) -  qw2(2 + 1/n 2 ) ] - a k  2h 2 

qw,(2 + l / n  I ) ~ l  + rlw2 (2 + '/n2 )~-2 

In the special case of Newtonian fluids ( n  1 -~ n 2 = 1), the result is identical with the classical result 
from [3, 4]. 

We shall now discuss the last formula for the case of a displacing fluid with such a small viscosity 
that it may be neglected by putting qw2 = 0. Then, for the critical wavelength which separates stable 
and unstable perturbations and for the rate of growth of the unstable perturbations, we shall have 

n / [ 
~, - i o =  ~ ,2g)  J r~ 
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It is clear from this that, in the case of pseudoplastic fluids (n < 1), the critical wavelength is smaller 
than in the case of a Newtonian fluid with a viscosity which is equal to the effective viscosity of the fluid 
which is displaced at the same rate of displacement. The rate of growth of unstable perturbations (of 
fixed wavelength) is higher in the case of a non-Newtonian fluid. The opposite assertions apply in the 
case of dilatant fluids (n > 1). 

We further note the possibility of quantitative variant readings when comparing the results for 
Newtonian and non-Newtonian fluids due to the variability of the viscosity of the latter. For instance, 
instead of the ch~rracteristic of the integral slope of the flow curve and the viscosity "qw = x~/g('tw), it is 
possible to choose, the characteristic of the local slope of the flow curve and the "tangential viscosity" 
flw = (~g/~w) -I. In the case of a power-law fluid, they differ by a factor which is equal to the power- 
law index flw = nrlw. It is therefore clear that, when the viscosity of a Newtonian fluid is correlated with 
the "tangential viscosity" of a non-Newtonian fluid, the preceding conclusion concerning the drop in 
the critical wavelength and the more rapid growth of unstable perturbations is only reinforced. 

Development of  instability in the radial displacement o f  a non-Newtonian fluid. In the case of purely 
radial flow of an incompressible fluld, the velocity (averaged over the gap width) is inversely proportional 
to the radius. The pumping in of a displacing fluid (with subscript 2) at the origin of the system of 
coordinates with a bulk flow rate per unit time Q(t) brings about a radial flow of both fluids with a velocity 

u = U  R u=url ,  r>R;  U~-Ur2, r<R;  U= dR Q 
r dt 4ghR 

Pressure gradients which are defined by the implicit relation 

s = l ,  r<R( t ) ,  s = 2 ,  r > R ( t )  (1.12) 

correspond to this; velocity field according to the modified Darcy law (1.2). Here, unlike in the preceding 
case of rectilinear displacement, the flow is not homogeneous and the pressure gradients (and mobilities 
Ms) are constant. 

Small perturbations of the circular displacement front 

r= R(t)+~m(t)e ira¢#, ~ ~. R (1.13) 

induce perturbations in the velocity and pressure fields of the fluids. The perturbations of the angular 
components 

• _ i d i,~, 
%.~. - --~ as(t)-~p (pBs)e (1.14) 

correspond, according to the incompressibility condition, to perturbations of the radial component of 
the flow velocity of the form 

U'rs = As(t)Bs(p)e imp, p - r l  R(t) (1.15) 

Note that, in the general case, perturbations of the velocity field do not admit of representations of 
the form (1.14), (1.15) with a splitting of the dependences on the radial and time variables. We therefore 
restrict ourselves to special classes of flows which justify a posteriori the assumptions which have been 
adopted. The linearized boundary condition for the equality of the normal components of the velocities 
in the perturbed displacement front and the front velocities 

~r= R dt 

enable us to express the amplitude of the velocity perturbations As(t) in terms of the amplitude of the 
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perturbations of the front ~-~m(t) 

AI(t):A2(t)=A(t)=--'-~ (~mR), BI(I) = B2(1) = 1 

On linearizing the modified Darcy law, for small perturbations of the velocities and pressures, we 
obtain the relations 

• t 

Ur s = _Ls OPs , 1 Ops 
Or ' u~s = -Ms --r ~Oq~ 

(1.16) 

which enable us to express pressure perturbations in terms of the functions Bs(p) and to obtain the 
differential equations for these functions 

Ps = - - - T  R(t)A(t pB s (p e ''no 
m s 

/~s dlp~tPLm~ ~pBAp)] ='n2BAp) 
(1.17) 

In the problem being considered concerning the perturbations of a circular displacement front, the 
coefficient functions M s and Ls depend, generally speaking, on the radial coordinate and the time, that 
is, on p and t. This, as has already been stated, contradicts the assumption that B~ depends solely on p. 
However, these assumptions are certainly satisfied for certain classes of flows. For instance, under 
displacement conditions with a constant rate of advance of the front, U = U0, which ensures a linearly 
increasing fluid flow rate Q(t) = 4rthU2o t, these equations make sense in the cases of arbitrary non- 
Newtonian fluids. Then, the velocities of the fluids depend solely on p (v,~ = U0/p) and, by virtue of 
(1.12) and (1.16), this is also true with respect to the pressure gradients OpJOr, the mobilities Mr and 
the coefficient functions Ls. In the case of power-law fluids, Eq. (1.17) makes senses regardless of the 
displacement conditions 

nsh 2 r2.s +1 q,-.. 
Ms = nsLs = (2ns + l)Ks L hpns v(0j 
p'-t  -~p [p ' - "  -ff-~p (pB,(p))] = n,m2 B,(p) 

and allows of the power solutions 

Bs (p) = pV, 

2(v I + 1) = -(1 - n I ) -  4(1 - n~ )2 + 4nlm 2 

2(v 2 + 1) = -(1 - n 2) + 4(1 - n2)2 + 4n2m2 

Here, the choice of the signs in front of the square roots is dictated by the requirement that the pressure 
• 2+vs--ns  perturbations (Ps - P ) should decrease on moving away from the front in the external fluid and 

their regularity close to the source at the origin of the system of coordinates in the internal fluid. In 
addition, the velocity perturbations (v~ - v~ - pVs) decay in the displaced fluid far from the front and 
are less singular than the main flow close to the source of the displacing fluid. 

Finally, the linearized boundary condition for the pressure jump in the perturbed front due to capillary 
pressure and written under the assumption that the meniscus is not perturbed in a direction perpendicular 
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to the plates and neglecting the relatively small normal viscous stresses 

[(~" yr)k. +(.; OP2 eira~ _p~)] =.j = aTg,,,el-m2, i,-v 
Lk a,- 

leads to an equation for the amplitude of the perturbations of a circular front 

; b l  _b2 ] +~mdR(bl  +m2 b2+__m2~ = 
a~d'-~ ~.Mt M2 )r=R at [, ~ M2 )r=g 

10~ dpB s ] 
=m2( m 2 -  )~-T~m, bs = dp Ip--I 

(1.18) 

The mobilities Ms iaa the neighbourhood of the front (r ~ R) are solely functions of its velocity and the 
resulting equation which is linear with respect to ~ enables one to determine the rate of growth of 
the distortions of the front d In ~,~/dt. 

We shall further restrict the treatment to the analysis of the case when a power-law fluid is displaced 
by a fluid with a negligibly small viscosity (the subscript s is then superfluous). In the case of a power- 
law fluid 

,,¢__, ( )'(dR)'-" 
= ¥ k i V J O  k T;  ) 

d + v = _ 2 [ l _ n + 4 (  1 n)2+4nm2 ] = ~ O , B ) I , , . ,  = ~ 

and the equation tor the rate of growth of the amplitude of the perturbations (1.18) is simplified 

1.~ d~m = 1 dR I + v + m  2 ~ (1.19) m2(m2-~o~( ,h )" ,(dR?-" 
~m dt R dt l + v  ( I+v)K k 2 n + l )  "~-T~'-~') 

The case of perturbations with a lower wave number m = 1 is the simplest here. The amplitude 
equation degenerates into the trivial equation d~{dt = O. Neutral perturbations require, generally 
speaking, additional analysis in the next order of perturbation theory (or that the low viscosity of the 
displacing fluid which was neglected is taken into account). However, they will not be discussed further 
here as they are not associated with distortions of a circular front and onlybring about its displacement 
as a whole. 

For perturbatious with m > 1, we have 1 + v + m 2 > 0 and, for an exponential change in the flow 
rate of the displacing fluid with time (or when the radius of the front increases) 

I:  q .t(l+~t)t2 
Q= qt v, R= 2~h(1+7) 

U = dR = ¢Rt,t_,)/(V+l) ' ~ _ 
dt 2rch + y) 

the equation for file rate of growth of the perturbations (1.19) can be rewritten in a more obvious form 

I d~, .= 1-  (1.20) 
~.;,, dR 

l + v + m  2 
>o, l" 

I+T '  (1 +v+m2)K L(2n+l)¢J l + v  
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Here Rc is the critical radius of the circular displacement front, and, when there is an increase in this 
in the case when t~ > 0, the derivative d~n/dt becomes positive and instability starts to develop (the 
opposite holds when t~ < 0). The existence of a critical radius is associated with the competition between 
the instability of a viscous flow and the stabilizing action of the surface tension, so that it is completely 
equivalent to the existence of a critical wavelength ~ in the problem in the case of a plane displacement 
front. According to (1.20), the condition t~ > 0 for a constant flow rate of the displacing fluid (~/= 0) 
implies a constraint on the power-law index n < 2, and it is only in the case of the uniform and accelerated 
expansion of a circular front 0' ~> 1) that it is satisfied without any such constraints. 

Equation (1.20) for the rate of growth of perturbations (in the radial variable R it can be considered 
as in an "extended" time variable) is easily integrated 

i t /ol  ~,, = ~m0 exp (1.21) 

In the case of a large expansion of the front, R >> Ro the growth in the perturbations becomes of the 
power type (rather than exponential as in the case of a straight front) and the exponent ~t increases as 
the exponent n of the constitutive law for the fluid decreases 

Ol.t=_ m2(l+v+m 2) 
t)n (l + v)24(l-n) 2 + 4 n m  2 

<0, la l ,= l=m-I  

so that in the case of fronts with a large radius, the development of instability in a pseudoplastic fluid 
(n < 1) must occur more rapidly than in a Newtonian (linearly viscous) fluid while the opposite effect 
occurs in the case of a dilatant fluid (n > 1). The effect on the exponential function in (1.21), which is 
important in the case of the almost critical development of perturbations, may be the opposite and, in 
fact, Oo/On < 0 when y < 1. 

Instability of short wavelength angular harmonics sets in later than in the case of harmonics with 
smaller m. The critical radius increases monotonically as the number rn increases, if t~ > 0 

[Rc. m / Rc,m+l ]o < 1 

The parametric dependence of the instability characteristics is obtained most simply for a uniformly 
expanding front 0' = 1). In general, the magnitude of t~ then turns out to be independent of the properties 
of the displaced fluid (o = 2), and we have 

R = Uot, Q = qo t, qo = 4~thU2 = const 

( ~ c / t  t [_~ (~_)2 ]  m2(m2- l)o~h [ nh in 
~m=~m0 exp , Rc 2 = ( l + v + m 2 )  g (2n+l)U0 

In order to compare the critical radii for fluids with different viscosity dependences, it should be specified 
which values of the viscosities, in fact, were recorded. In the case of radial flow in a Hele-Shaw cell, 
the shear stresses on its walls depend on the radial coordinate and, for this reason, a non-linear viscosity 
turns out to be variable even on the walls 

I 
ll_n 

"C w n h  r 
n ~ -  = K 

g(x~) (2n + 0U0 R 

It is convenient here to record viscosities close to the front rlwR =- rlwlr=R, and when this is done we 
obtain for the critical radius 

R2 = m 2 (m 2 - 1)n txh "2 OR c 

(1 + v + m 2 )(2n + l) U0~wR ' 0----n- > 0 

Hence, the critical radius of a uniformly propagating displacement front of a pseudoplastic fluid is 
smaller than in the case of the displacement of a Newtonian fluid. Note that, when a comparison is 
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made using the "tangential" viscosity close to the front flwR = (3g/~XwR) -1 = n~wR, the derivative ORc/On 
is found to be still greater. 

Finally, when surface tension is neglected, the displacement of a low-viscosity gas by an arbitrary non- 
linear viscous liquid from a Hele--Shaw cell turns out to be unstable with respect to perturbations of 
any wavelength. This applies to straight and circular displacement fronts in equal measure. 

Surface tension makes short waves in a rectilinear uniformly moving front stable. In addition, the 
critical wavelength (which separates stable and unstable waves) decreases in shear thinning fluids 
(pseudoplastic fluids) and increases in dilatant fluids compared with the ease of a viscous fluid at equal 
viscosities close to the displacement front. The rate of exponential growth of small unstable perturbations 
(with a wavelength greater than the critical wavelength) is greater in pseudoplastic fluids. 

Under the action of surface tension, the growth of a circular front is stabilized up to a certain critical 
radius. On further expansion, the lower angular harmonics initially become unstable and then the higher 
angular harmonic~ (this all occurs within the framework of the linearized description). Here, even the 
growth in small perturbations is not exponential, but, in the case of large radius fronts, is close to a 
power-law relation. Under conditions where there is a uniform expansion of the front, the critical radius 
is smaller and the rate of growth of unstable perturbations is greater in a pseudoplastic fluid than in a 
viscous Newtonima fluid. 

We now arrive at a general conclusion concerning the lower stability of the process of the displacement 
of a shear thinning fluid• 

Instability in the displacement of non-linear viscous fluids has been analysed previously in [1, 5-9]. 
The modified Darcy law and instability criteria of the form of (1.8) with a pressure gradient para- 
metrization in the case of a plane displacement front in a porous medium (that is, in a problem which, 
in many respects, is similar to the problem of the flow in a Hele-Shaw cell) has been considered in [5], 
where earlier papers are also mentioned. In the case of fluids which follows a power law, instability in 
rectilinear and circular fronts in a porous medium has been considered in [6-8]. In addition, a circular 
front has been discussed [7, 8] without taking account of such an important factor as the surface tension. 
The analysis in [1] was confined to a plane front in a Hele-Shaw cell (with not the most successful 
parametrization). The problem of the stability of a circular front in a Hele-Shaw cell has been discussed 
in [9] in reasonable detail but, in this case, an error was made in formulating the boundary condition 
for the velocities on the front which was reflected in the results obtained. Note that, in [1, 9], an 
exceedingly large spatial description was used with a subsequent averaging of the results over the 
thickness of the narrow gap. Finally, invariance of the critical radius for angular harmonics with m = 
2 when the exponent of the rheological relation for a non-Newtonian fluid changes was unjustifiably 
assumed in [9] in the qualitative interpretation of the results. 

2. D I S P L A C E M E N T  F R O N T S  OF V I S C O - E L A S T I C  FLUIDS 

Development of the instability of a plane-parallel displacement front. We now consider a steady 
pressurized shear flow in a Hele-Shaw cell in the case of a visco-elastic fluid is modeled with the 
Jeffreys--Oldroyd-B constitutive equations 

( au i ~u j 

Here v = {vl, v2, V3} is the fluid velocity, eij is the deformation rate tensor, oi- is the additional stress 
tensor (above the lsotroplc pressurep) and 11, 01, 0z--the viscosity, relaxation time and retardation (lag) 
time--are the constants of the fluid. 

In the case of the inertialess steady flow of an incompressible fluid, the velocity vector turns out to 
be a two-dimensional vector, the pressure is independent of the transverse coordinate z and the velocity 
distribution is expressed in terms of the local pressure gradient using the Boussinesq formula, which 
is analogous to Darcy's law for plane motion 

h 2 ( z 2 "~ 
v = - - ~  ~ l -~ - )Vp ,  vz =o  
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The stress field in a visco-elastic fluid then has the form 

Ol_O 2 [~pXp )2 (~pyp)2 Ol_O: 2Z2 ap ap Oxx= 2Z 2 01-02 2Z 2 , Oxv= 
rl , Oyy= 11 - 11 ax ay 

ap =nz , o,z=nz , o,,=o 

These relations are exact for flow between two unbounded plane plates in the case of a pressure gradient 
which is constant both in magnitude and direction. 

We shah use the above formulae in the more general situation of a variable pressure gradient Vp(x, 
y, t), assuming that all fields are slowly varying functions of the coordinates in the plane of the gap. 
After averaging over the width of the narrow gap between the plates, the flow will be described by the 
usual Boussinesq-Darcy relations for an incompressible fluid of viscosity rl 

h 2 
ap=O 

and the field of the averaged stresses is simply determined from the pressure fieM 

(<,o): (<,>>.):c . (<,,,):o 

c = 2h2(01-02)/(3~) 

It can be shown that these relations can be obtained within the framework of the formal procedure 
of expansion with respect to a small parameter which characterizes the slowness of the change of state 
with respect to the spatial variables. Although the flow in a bulk fluid in a similar "quasihomogeneous", 
"local" approximation is solely determined by the viscous properties, even small elastic stresses can have 
an influence on its stability through the boundary conditions. 

We now consider the problem of the stability of a rectilinear, uniformly moving front for the 
displacement of a visco-elastic fluid by an inviscid fluid (a gas). In the ease of the basic (unperturbed) 
flow in such a front x = Ut and the boundary conditions for the velocity and the normal stress 

t~ (2.1) aP--u, 
ux = 3rl ax 

are satisfied. 
Here, the capillary pressure jump (¢t is the surface tension coefficient) is taken into account and, in 

addition, the curvature of the interracial surface in a transverse direction to the plates is assumed to 
be constant and independent of the motion of the front which corresponds to ideal wetting of the plates 
of the trough which is filled with the fluid. 

In the bulk of the fluid, we have 

an ~n 
u~ = U ,  _:z. = _~.~2' U = eonst 

ax h -  

For small perturbations of the front (1.5), the linearized boundary conditions for perturbations, 
denoted by a prime, in the perturbed front have the form 

and, after using the relations for the perturbations of the flow in the bulk of the fluid 

• h 2 ~p" (O~.x)_...4(Ol_O2)uaP" 
u ~ =  3rl a x '  ax 
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they can be rewritten as conditions for perturbations of the pressure and the boundary 

- - - -  _ ,a o~.~ h2 ~--e..P',l u+ff..~- ~= 1+4(01 
gt 311 gx Ix=t,'t, oxJ  /x=t,'t 

(2.2) 

Pressure perturbations satisfy Laplace's equation. By virtue of the linearity of the problem for the 
perturbations, it is sufficient to consider perturbations which are periodic in x and t of the form 

~(y, t) = A(t)  exp i(ky - tot), p' = P(x  - Ut) exp i(ky - cot) 

Then, the elementary pressure perturbations which decay on moving away from the front are given 
by the expression 

p' ~ exp[-Ikl(x - Ut ) + iky - itot ] 

and, when this is substituted into boundary conditions (2.2), it leads to the following expression for the 
amplitude of the growth in the small sinusoidal perturbations of the boundary 

2 

l =lkl(u_ _4(01 _0 2)ulkl)_~ A=A oexp×t; ×=~-  at 3• 

This expression differs from the classical result for the instability of a plane-parallel displacement front 
of a viscous fluid ~alely in the fact that there is an additional factor in the denominator which depends 
on the difference between the relaxation time and the retardation time of the fluid. The latter has no 
effect on the magnitude of the critical wavelength ~ or the critical wave number. 

k c = 2n / kc = (3flU / 0[) 112 / h 

which correspond to the shortest-wavelength unstable perturbations. Only the increment in the growth 
of the perturbations changes and the rate of growth of unstable perturbations increases with wave 
numbers from the range 

k ~ min(kc ,k°) ,  k ° = [4(01 -02)U] -I 

When the fluid has a low elasticity (which corresponds to short relaxation and retardation times at 
a fixed viscosity), k ° > kc and all unstable perturbations are destabilized. In the opposite case, only the 
longest-wavelength perturbations are destabilized and, according to the formula obtained, stabiliza- 
tion occurs in the case of the shorter wavelength perturbations with k ° < k < kc, which are unstable 
from the very outset, since the factor in the denominator changes sign. In general, stable and unstable 
perturbations formally change places when k ° > k. However, it should be remembered that all of the 
preceding derivation is based on the use of the asymptotic form of spatially slowly changing motions 
(that is, in the sense of long wavelength), so that it hardly follows to attribute any serious significance 
to the formal conclusion mentioned above. 

The fastest growing perturbations with k < k ° are characterized by a wave number 

_ kC[l -o,)vk ]-"' kmax - -T(°' J 
that is, the wavelength of the fastest-growing perturbation becomes smaller under the influence of the 
elasticity of the fluid. 

Development o f  the instability o f  a circular displacement front. Within the framework of the same "quasi- 
homogeneous", "local" approximation, for which the flow is described by the usual Darcy law and the 
visco-elastic effect of the normal stresses is only taken into consideration in the boundary conditions 
in the displacement front, we shall now consider the problem of the stability of the radial displacement 
of a visco-elastic fluid. 

The velocity of the flow, averaged over the narrow gap between the plates and the stress field in the 
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plane of the gap are described by the equations 
h 2 ~ ap 

Using the boundary conditions in a circular displacement front r = R ( t )  

r=R=dRdt' (P--(O"}>Ir=RI = -- Ot(I+\h "R)I ") Ur 

which are an analogue of conditions (2.1) for the flow in the bulk of the fluid, we obtain 

R dR _311RdR r 
ur = -- - - ,  P = Po In-- r dt h 2 dt R 

For small perturbations of the front (1.13), the linearized boundary conditions for the perturbations 
take the form 

OF r=R---- dt 

[p.(O~)+~___~(p_(Cjr~))~.,ei.,,l.=R = Or(l- m=> . R = 2  gmeim~o 

For perturbations in the bulk of the fluid, we find, when account is taken of the decay condition at infinity 

a ~  dinR , • 311 , 311 (R~ m Reim~ ' (a , )=4m(0~_02)__~._  p 
P = ~ r U r = m h  2~,r j  

At the same time, the boundary conditions reduce to an equation for the increment in the growth of 
the small perturbations 

[ m dR] l - m  dR txh2 = = - 1  m 1 d~m 1-4(0'-02) 'R ~ R dt 311 (m2 )'~-3 1%, ~., dt 

In the case when the change in the front radius with time follows a power law 

R=qt ~, t=xR f~, ~ = 1 / T  

the equation for the growth of small perturbations of the front can be rewritten in the form 

1 ~ ,  [ (_~_)3-1~][ m(O, _02)l- '  K., = ~,  = ( m - l )  I -  1 ~--~ j 

R 3-1~ = o~%m(m + l)h 2 / (311) 

It is seen from this that, in the approximation being considered, the visco-elasticity, when 

H - 4(0 t -02)R-IdR/dt,~l 

has no effect on the critical radius Re (the front is stable when R < Re) and only somewhat increases 
the rate of growth of unstable perturbations (when R > Re). Elasticity is found to have a greater effect 
on the higher harmonics (with larger m). 

A pronounced acceleration of the development of instability and the replacement of a stability domain 
by an instability domain occur when the parameter H formally tends to 1/m and on passing through 
these values. 

The effect of the elastic parameter H falls off rapidly as the radius of the front increases fiR(t) increases 
more slowly than exponentially. 
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Uniformly moving finger o f  an inviscid fluid. As  the preceding analysis shows, the effect of the elasticity 
of a fluid on the behaviour of the free boundaries in Hele-Shaw flow reduces, in the first approximation, 
to a change in the boundary condition for the pressure on the free boundary which (when there are no 
capillary forces) talces the form 

k3n) =0 

where n is the direction of the normal to the boundary. In the bulk of the fluid, the equations of motion 
in the first approximation remain the same as for a Newtonian viscous fluid and reduce to Laplace's 
equation in the case of the velocity potential 

A(p = O, ~p = -h 2 p  I (311) 

This enables one to advance to some extent when investigating more complex, non-one-dimensional 
motions with a free boundary. In particular, we shall consider the classical Saffman-Taylor problem on 
the steady motion of a finger of an inviscid fluid along the axis of a strip-shaped Hele-Shaw cell (Fig. 
la) filled with a visco-elastic fluid. Within the framework of the approximation which has been adopted, 
the problem reduces to finding a pair of conjugate harmonic functions cp and ¥ in the domainABCDEA 
(Fig. 1) which satisfy the conditions 

~F = O,(x,y) ~ AB; W = kUH, (x ,y)  ~ CD 

tp=-~l(0tP] 2,~.'~-n ) ( x , y )~E A;  [5=~-~c=2(Ol-O 2) 

Here, the finger botmdary EA itself is to be determined; the corresponding additional boundary condition 
expresses the fact that the finger moves as a solid body at a speed U, and we therefore have that W = 
Uy along EA. 

This problem can be significantly simplified and made more obvious by introducing [10] the auxiliary 
analytic function 

Z=~+i'q=W-Uz, W=~+iV, z=x+iy (2.3) 
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The strip 1-I z which corresponds to the points shown in Fig. l(b) is the image representation of the 
unknown flow domain in the X plane; the complex coordinate z and the complex potential Ware analytic 
functions of X in lIz which satisfy the boundary conditions 

~ t= lmW=0,  y = l m z = 0 ,  1]=0, ~<0 

~=lmW=2LUH, y=lmz= H, rI=-(I-L)UH, -oo<~ <oo (2.4) 

w+ (avlas) 2 =0, ds/d =ldzld  l, 11=0, 

and are related by (2.3). 
In the case of small 13, for which the problem being considered really makes sense, it is easy to find 

an approximate solution which is iteratively constructed. On putting ~ = 0 in expressions (2.3) and (2.4), 
we first obtain the zeroth approximation problem 

q/o=O, 1]=0, ~<0;  ¥o=tUH, rl=-(I-2L)UH,-~<~<o0 

% = 0 ,  rl=O, Zo=(Wo-Z)/u 

The problems of fmding W 0 (X) and z0(x) are now separated and can be solved successively. 
The solution of the zeroth approximation problem has been found in [3], and the result has the 

form 

Z =  WO + 2 ( l _ ~ , ) i n [ l [ l + e x p ( _ l . t W o ) ] ]  ' ~t= ~t 
H kUH n LZ j ~UH 

Z=-(1  - X)UH[ ~-~H +--x2 In 2[1 + exp(-~Wo)] ] 
(2.5) 

Here, W0 = tP0 + i~0 is the complex potential in the zeroth approximation, which varies in the half- 
strip 0 ~ 90 < *% 0 ~< ~/0 ~ XUH shown in Fig. l(c). It is henceforth more convenient to use the initial 
potential W0, which is uniquely related to X by the second relation of (2.5), as an argument when 
constructing the successive approximations. For them, we have the following sequence of problems (in 
the X plane) 

~ k = 0 ,  1]=0, ~<0;  ~k =X/-/U, TI=- (1 -~ , )HU, -oo<~<oo  

=-[l b k-I dzk_l rl=0, Z, = (Wk-z) 
U (2.6) 

k = l  ..... n .... 

For a known function ~0,(~), the mixed boundary-value problem (2.6) is solved in closed form using 
a standard method. First, using the transformation 

= x + i0 = exp (1 - L)UH 

the domain of variation of the independent variable is mapped into the upper half-plane, 0 > 0, and 
the mixed boundary-value problem which arises is solved using the Keldysh-Sedov formula. However, 
we shall use a representation of all the functions in terms of ~0 and % which are treated as coordinates 
in the auxiliary plane W0. Here ~/k and ~0k are harmonic functions of W0 and %. 

From (2.6), we have for the first approximation (k = 1) 

° 

~0 

It follows from (2.5) that 
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d •  
• - I  

~plloo=o = -~2L2U212L 2 +(1-X)  2 tg 2 Ix~------q-° ] "' 
(2.8) 

Relation (2.8) fixes the value of the required function on the left-hand boundary (q~0 = 0) of the half- 
strip in Fig. l(c). In addition, it must satisfy the conditions 

3qh / 3Vo = 0, Vo = 0; ¥o = XUH, q~o ~ 0; ~0 ! ~ ~00, ~0 o ~ o. 

Solving Laplace's equation for ~Pl with the above-mentioned boundary conditions, we find 

~p! = Cpo + ~., Cm cosm~t¥o exp(-ml.t~%) 
mffi0 

~t = Vo - ~ ,  C,n sin ml, tVo exp(-m~t~%) 
m~O 

W I = W 0 + ~ C  m exp(-mlaWo) 
h i=0  

(2.9) 

z~ - Z = zo(Wo) +_;7 y .C m exp(_ml~W0 ) (2.10) 
t.7 m = 0  

Relations (2.9)-(2.11) give a complete solution of the fLrst approximation of the problem for arbitrary 
~ As in the Saf-~an-Taylor problem, the magnitude of ~, the asymptotic value of the width of the finger, 
remains indefinite a~d a solution of the problem exists for all X between 0 and 1. The unknown boundary 
of the finger is obtained if one puts in (2.10) 

W o = i¥  o, 0 ~ ~o ~ XUH 

z~ = ~--~Wo +--H(1-X)In  [l+exp(-p,¥o)]+ 1 ~ C  m exp(-imlaV o) 
7t U m=O 

The result turns out to be particularly simple when X = 1/2 (which corresponds to the stable fingers 
observed experimentally at sufficiently high rates of displacement). The integrand in (2.11) then becomes 
2(1 + cos ~t¥0)cos m~t¥0. Only the first (m = 1) Fourier coefficient is therefore non-zero in this case, 
Cra = 0, m # 0; C1 = -2~X2U 2. Hence, for the perturbed boundary of the finger, we obtain 

zt (~o) = Zo (~to) - 2[ ~2U2 [cos 27tV0 - i sin 21t¥°-) 
UH UH 

In the rear part of the finger (¥0 --~ UH/2), the points of the boundary are displaced in the forward 

I I 

Fig. 2. 
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direction relative to the unperturbed position, since cos[2~aF0/(UH)] ~ -1 while, in the leading part 
(~0 ---) 0), they are displacedbackwards by the same amount ~U/2 (the finger shape is, of course, only 
determined with an accuracy up to a translation as a rigid whole along the axis of the channel). Hence, 
the transitional zone contracts and the finger becomes blunter. The unperturbed and perturbed shapes 
of the finger are shown in Fig. 2 for y = I~U = 0.2. 

Note that the direct physical interpretation of this result as it applies to fingers which develop during 
the unstable displacement of elastic fluids is made difficult by the fact that the initial problem has a 
continuous spectrum of permitted steady shapes of the fingers (for any ~.) and it is unclear how taking 
elasticity into account affects the choice of the "correct" (stable) solution from this spectrum. The 
problem of choice has so far only been investigated taking account of the effect of capillary forces on 
the finger free boundary. 

In conclusion, we note that the formal, mathematical investigation carried out in this paper essentially 
refers to any flow in a Hele--Shaw trough or to its analogues of another physical nature when the pressure 
distribution in the bulk of the fluid is described by Laplace's equation and the bounding value of the 
pressure at the free boundary is a function of the rate of advance of the boundary 

plr  = f (v#) l  r 

This relation may be a consequence not only of the visco-elastic behaviour of the fluid but also of 
other physical effects such as, for example, the non-constancy of the dynamic boundary wetting angle 
of the fluid being displaced. Corresponding effects for Hele-Shaw flows have been studied previously 
in [ 12-14]. We do not rule out the possibility that it is they, in fact, and not the contribution to the capillary 
pressure from the curvature of the front in the plane of the cell which is conveniently taken into account, 
which play a fundamental part in the dynamics of the boundaries. 

This research was carded out with financial support from the International Science Foundation 
(M69000 and M693000). 
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